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Abstract
The electron–electron scattering rate (1/τee) in the presence of a random
disorder potential has been computed, within the random phase approximation,
as a function of excitation energy (ε) for a quantum well (QWL), a quantum wire
(QWR) and a periodic quantum wire structure (QWS). It is found that: (i) 1/τee

goes to zero when ε → 0 and (ii) the ε dependence as well as the magnitude of
1/τee are determined by the value of the inverse electron–impurity collision time
(1/τ), the carrier density and the width of a QWR. The computed 1/τee exhibits
its maximum value for 1/τ → 0 and it decreases thereafter on increasing 1/τ ,
for all values of ε and other parameters. The computed 1/τee of a QWR declines
monotonically with the width of the QWR and it reduces to 1/τee of a QWL at
larger wire widths, for a given value of ε and the other intrinsic parameters. The
1/τee of a QWS differs from that of a QWR because of the added contribution
from inter-wire electron–electron interactions in a QWS. For the given values
of ε, 1/τ , carrier density and the width of a QWR, the 1/τee of a QWS is
found to be smaller than that of a QWR and larger than that of a QWL. This
suggests that the electron–electron scattering rate is enhanced on the reduction
in the effective dimensionality of a system. Our theoretical study of 1/τee and its
dependence on various intrinsic parameters of QWL, QWR and QWS suggests,
in conclusion, that a quasi-particle Fermi liquid description can be applied to
electron–electron scattering in the presence of an electron-disorder potential
scattering, at zero temperature, in low-dimensional systems.

1. Introduction

The many-body theoretical description of a system of electrons involves an important concept
of quasi-particle lifetime. The life of an electron in a given state is determined by the scattering
rate that is largely contributed by electron–electron scattering in an interacting electron system.
The quasi-particle description of electrons in an interacting system (degenerate fermions) is
based on the assumption that the inverse lifetime of an electronic excitation is small compared
to its excitation energy (ε) above Fermi level. As a consequence, the electronic distribution
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function in a degenerate Fermi system shows a sharp discontinuity at the Fermi level. These
assertions are mainly based on the assumption that in quasi-particle scattering only large
and energy-independent momentum transfers are essential, which is basically true for bulk
phenomena. However, a quasi-particle description may break down in one-dimensional (1D)
and quasi-1D systems when a strong electron–electron interaction results in a rapid decay of
electronic excitations. There has been a widely held viewpoint that the scattering of electrons
by a random impurity (disorder) potential could restore the Fermi surface and a Fermi-liquid
quasi-particle description can be applied to these systems. The electron scattering from a
disorder potential is unavoidable, since a small amount of residual impurities always exists
in a realistic low-dimensional system, doped/modulation doped semiconductor structure. The
disorder effects are specific to a confined system that exhibits the strong deviations from bulk
behaviour, depending on the ratio of system size and disorder correlation length. It is to
answer these questions that we performed a theoretical study of the inelastic scattering rate for
electron–electron scattering, 1/τee, in the presence of a disorder potential in a quantum well
(QWL), a quantum wire (QWR) and a periodic structure of quantum wires (QWS). Another aim
of this paper is to see whether or not a satisfactory description of electron–electron scattering
in 1D and quasi-1D systems consisting of a significant randomized disorder potential can be
provided beyond the Tomonaga–Luttinger model. The Tomonaga–Luttinger model makes
some drastic simplifying assumptions that make the comparison between model calculations
and the experimental results somewhat tenuous.

Apart from the construction of a many-body theory, the decay time of an electronic
excitation plays an important role in a number of physical processes, such as damping of
collective excitations, dephasing of localized electrons, optical transitions, Hall effect, etc.
The electron–electron scattering rate in the presence of a disorder potential leads to the
quantum corrections to: (i) the conductivity and its nontrivial temperature dependence and
(ii) thermodynamical quantities of the electron gas. The physical relaxation process of an
electron is inelastic and its characteristics timescale depends on the details of those scatterings
that give rise to real transitions. In addition to the scattering rate, the momentum relaxation
rate and the energy relaxation rate are also defined. The momentum relaxation rate determines
the current whereas the energy relaxation rate is related to the average energy of an electron in
the presence of fields. The relative importance of these three rates is decided by the property
we are interested in, for a given system.

There have been large numbers of theoretical and experimental studies on electron–
electron scattering and related aspects of a two-dimensional electron gas (2DEG) [1–6] and
one-dimensional electron gas (1DEG) [7–12] in the presence of a random impurity potential.
Disorder caused by impurities has important consequences in the many-body properties of low-
dimensional electron systems. Several good review articles exist in the field [13, 14]. Some of
the recent publications in this field deal with electron–electron scattering in heterostructures
and superlattice structures [3, 15], the effects of electron–electron scattering on electron beam
propagation in a 2DEG [16], relaxation of excited electrons in a paramagnetic electron gas [17],
electron–electron scattering in low diffusivity thick RuO2 and IrO2 films [18], electron–electron
scattering and linear transport in two-dimensional systems [19], transport properties of a
quantum wire in the presence of impurities and long range Coulomb force [20], electron–
electron scattering in quantum wires and the spin effects [21], intrasubband and intersubband
inelastic scattering rates due to electron–electron interactions in quantum wire structures [22]
and the relative importance of electron–electron interactions and disorder in 2D metallic
state [23].

In this paper, we present a calculation of 1/τee as a function of ε and the electron–impurity
collision time (τ ), within the random phase approximation (RPA), for a QWL, QWR and
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QWS, which are referred to as 1/τ 1
ee(ε, τ ), 1/τ 2

ee(ε, τ ) and 1/τ 3
ee(ε, τ ), respectively. Our

calculations are performed for the momentum transfer, q , and frequency, ω, space that has
the correct diffusive behaviour and belongs to the phase space around the Fermi surface. The
earlier studies on electron–electron scattering in the presence of a random disorder potential in
2DEG and 1DEG have been performed for q and ω not covering the entire diffusive behaviour
regime. Our computed 1/τ 2

ee(ε, τ ) and 1/τ 1
ee(ε, τ ) significantly differ both in magnitude as well

as in behaviour from their previously reported values [24]. Our calculations are applicable to
short range disorder systems such as doped homo-junctions, where a doped impurity coexists
with conduction electrons, and the modulation doped hetero-junctions consisting of spatially
separated impurities and conduction electrons. The spatially separated impurities yield a
relatively smooth disorder potential. The paper is divided into four sections. The formalism
is described in section 2. Calculations and the discussion of the results for QWL, QWR and
QWS are given in sections 3–5, and finally our work is summarized in section 6.

2. Formalism

We consider the case of a degenerate electron gas, in the presence of a randomized disorder
potential confined to a QWL, QWR and QWS, at a temperature T = 0. Our calculation is
basically performed within RPA with simplifying assumptions that the Fermi energy and other
energy scales pertinent to the system are small compared to the energy separation between the
lowest energy subband and the higher energy subbands. We further assume that a spatially
randomized potential is distributed according to the Gauss-δ correlation law. The products of
pair correlators can represent all the correlators and the Born approximation can be used for
the interactions with short range impurities [25]. In order to keep our treatment simple, we
avoid microscopic models that treat the realistic distribution of randomized impurities [26].
A simple treatment of disorder effects in nanostructures is given by Richer [25]. The inverse
electron–impurity time, 1/τ , can be given by: 1/τ = πυν〈U 2〉, where ν is the density of states
and 〈U 2〉 = cim(

∫
v(r) dr)2. Cim is the impurity concentration and v(r) is the single impurity

potential [24]. 1/τ is independent of momentum and energy. Our calculations are performed
for intrasubband transitions within the ground subband. The RPA 1/τee in the presence of a
disorder potential is given by [24]

1

τee(ε)
= 8

π3ν

∑
q

∑
q1

∫ ε

0
dω

∫ 0

−ω
dε′ V (ω, q)V ∗(q1, ω)

×
∏
(ε, ε − ω, q, q1)

∏
(ε′, ε′ + ω, q, q1). (1)

The screened electron–electron interaction, V (q, ω), is defined as

V (q, ω) = V 0(q)

1 + V 0(q)π(q, ω)
(2)

where, V 0(q) is the bare Coulomb potential andπ(q, ω) is the electronic polarization function.
To obtain the response function,

∏
(ε, ε−ω, q, q1) averaging over the impurity configuration

is done by separating the contribution to 1/τee from the diffusion poles, which correspond to a
change in the interaction time due to diffusion and are related to a singularity in the particle–
hole channel. The impurity potential used in averaging is shown in figure 1(a). The full
lines represent the bare Green function and the broken lines correspond to random potential
correlators. After averaging, the

∏
(ε, ε − ω, q, q1) is given by [24]∏

(ε, ε − ω, q, q1) = πντ

2
δqq1 Re[ξ(ε, q, ω)D(ε, q, ω) − ξ ′(ε, q, ω)D′(ε, q, ω)]. (3)
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(a)

(b)

D (q, ω)

Figure 1. (a) Impurity configuration potential diagram and (b) the ladder diagrams. Full lines
correspond to bare Green functions and broken lines correspond to random potential correlators.

The D(ε, q, ω) is the sum of the ladder diagrams as is shown in figure 1(b). The D′(ε, q, ω)
differs from D(ε, q, ω) in complex conjugation for all Green functions with energy, ε − ω.
On solving the equation depicted in figure 1(b), one gets [24]

D(ε, q, ω) = 1

1 − ξ(ε, q, ω)
(4)

D′(ε, q, ω) = 1

1 − ξ ′(ε, q, ω)
(5)

where

ξ(ε, q, ω) = 1

πντ

∫
(d p)G(ε,p)G(ε − ω,p − q), (6)

ξ ′(ε, q, ω) = 1

πντ

∫
(d p)G(ε,p)G∗(ε − ω,p − q). (7)

In equation (3),δqq1 is the Kronecker delta function and Restands for the real part of the quantity
in brackets. G(ε,p) is the electron Green function averaged over the impurity configuration
shown in figure 1(a). Due to the analytical properties of G(ε,p), the ξ(ε, q, ω) is small in
parameter (h̄/τεF) when ε and ε − ω have the same signs, where εF is the Fermi energy.
Therefore

ξ(ε, q, ω) = ξ(q, ω)[θ(ε)θ(ω − ε) + θ(−ε)θ(ε − ω)] (8)

ξ ′(ε, q, ω) = ξ(q, ω)[θ(ε)θ(ε − ω) + θ(−ε)θ(ω − ε)]. (9)

Then for ω < ε, the
∏
(ε, ε − ω, q1), for ω < ε can be simplified to∏

(ε, ε − ω, q, q1) = πντ

2
δqq1 Re

[
ξ(q, ω)

1 − ξ(q, ω)

]
. (10)

This results in

1

τee(ε, τ )
= 2

πν

∫ ε

0
ω dω

∫
d �q
(2π)d

|V (ω, q)|2
[

Re

{
ντξ(q, ω)

1 − ξ(q, ω)

}]2

(11)
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where d takes the value 3, 2 and 1 for 3D, 2D and 1D systems, respectively. Equation (11)
is applicable to the case of an arbitrary dimensionality. The evaluation of ν, V (q, ω) and
ξ(q, ω) for a given system depend on its dimensionality. Equations (1)–(11) are obtained
by treating τ independent of energy and momentum. The major contributions to 1/τee(ε, τ ),
when ε � εF, come from virtual single-particle transitions in the case of 2D systems and from
virtual plasmons in the case of 1D systems [8].

3. A quantum well (2D electron gas system)

A quantum well consists of a number of energy subbands. The single-particle transitions
that predominantly contribute to 1/τee for ε smaller than the intersubband energy separation
between the ground subband and higher subbands are the intrasubband transitions within
the ground subband. Evaluation of ν and

∏
(q, ω) for q and ω confined to single-particle

excitations, q � 2kF and |ω + i/τ | � qvF, gives [24]

ν1 = 2m∗
e

π h̄2 , (12a)

V1(q, ω) = 2πe2

ε0

1[
q + g0 D1q2

−iω+D1q2

] . (12b)

where m∗
e is the effective mass of an electron. Evaluation of equation (6) along with (8)

gives [24]

ξ1(q, ω) = 1√
(1 − iωτ)2 + q2l2

. (13)

Subscript (superscript) 1 stands for a QWL. The 2D diffusion coefficient, D1 = v2
Fτ/2,

and mean free path l = vFτ . vF is the Fermi velocity and kF is the Fermi wavevector. ε0

is the background dielectric constant and the inverse screening length, g0 = 4m∗
ee2/ε0h̄2.

Equation (8) for a QWL can be rewritten in terms of dimensionless quantities as follows:

h̄

τ 1
ee(x, S)εF

= K 2

π

∫ x

0
y dy

∫ 2

z0

dz
(4z4 + y2S2)

z[4(z + K )2z2 + y2S2]

[
Re

{
1

S − √
(S − iy)2 + 4z2

}]2

,

(14)

where S = h̄/τεF is the normalized broadening, x = ε/εF is the normalized energy, K = g0/kF

is the normalized inverse screening length, z = q/kF and y = h̄ω/εF.
Equation (14) is applicable to weak as well as strong disorder potential cases. An analytical

solution of equation (14) for all values of x and S is not possible. The analytical solutions that
are valid for limited values of x and S can be obtained, however. We performed the z and y
integrations for S � 1 (close to zero) to obtain

h̄

τ 1
ee(x, S)εF

= K 2

2π

[
I0

{
2 ln(4/S)− 12K 2 + 2K + K 3/3 − 2 ln(2 + K )− 2K

2 + K

}

+ 2J0{1 − ln(2x/S)} + K0

{
ln(K + α/2) +

4K (K + α)

α(α + 2K )

}
+

4K (K − α)

α(α − 2K )
L0

+
1

(1 − r2)

{
4r2 ln(2 + K ) + 2 ln(K + x0/2)− 4r2(2K 2 − ln(4/S))

+ 2r

(
2 ln(S/2x) + Kr +

K 3r

12

)}
+

1

2
ln(x0 + α) ln

(
x0 + α

4

)
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− 1

2
ln(S + α) ln

(
S + α

4

)
+

∞∑
m=1

(−1)m+1

m2

{(
x0 − α

α + 2K

)m

−
(

S − α

α + 2K

)m}

+
K x2

24
− 4K 2r2 − 2 ln(K + S/2)− 2{1 − ln(S2/2)} ln

(
1 − t

1 + t

)

+ 2
2t

(1 − t2)
ln(2)− 2

K
{(x − S) + (x3 − S3)/36K 2 + (x5 − S5)/400K 4}

]
(15)

where

x0 =
√

x2 + S2, α =
√

4K 2 + S2, I0 = ln(1 − r2),

J0 = ln

(
1 − r

1 + r

)
, K0 = ln

(
α − x0

α − S

)
, L0 = ln

(α + x0

α + S

)
,

r = x/2 K and t = S/2 K.

The analytical results for 1/τ 1
ee(ε) in the absence of a disorder potential (S = 0) has also been

reported [3]. However, these results were obtained by taking z � K and y � 2z, in terms of
our notation. The approach was justified by arguing that only z values close to z0 and y values
close to zero make the most dominant contributions to 1/τ 1

ee(x, S). Our calculated reduced
electron–electron scattering rate, given by equation (15), is therefore more accurate compared
to that reported by Riezer and Wilkins [3] and it is applicable to the weak disorder potential
case instead of the zero disorder potential case. Following the argument of Riezer and Wilkins,
equation (14) can be simplified to

h̄

τ 1
ee(x, s)εF

= 1

π

∫ x

0
y dy

∫ K

z0

z dz

(4z2 + S2 − y2)2
(16)

whose validity is better for the case of S � 1 and x � 1. On performing z and y integrations,
we obtain

h̄

τ 1
ee(x, S)εF

= 1

16π

[
(4K 2 + S2) ln

(
4K 2 + S2

4K 2 + S2 − x2

)
+ x2 ln

(
4K 2 + S2 − x2

2S2

)
− x2

]
.

(17)

In order to see how 1/τee(x, S) depends on the normalized energy and normalized broadening,
which covers the weak as well as the strong disorder potential case, we numerically computed
equation (14) for a GaAs quantum well having m∗

e = 0.068 me and ε0 = 12.5 [28]. The
1/τ 1

ee(x, S) first has been computed as a function x for given S and then as a function of S for
given x at kF = 3.45×106 cm−1 and εF = 35.25 meV. Our numerically computed 1/τ 1

ee(x, S)
from equations (14), (15) and (17) is plotted as a function of x in figure 2 for two values of
normalized broadening (0.001, 0.1). As can be seen from the figure, the simple analytical
result, given by equation (17), gives very good agreement with detailed numerical results for
x < 0.5 and S � 1. It is to be noted that equation (15) is an exact solution of equation (14),
for S → 0. We found that the computed 1/τ 1

ee(x, S) as a function of x can almost be fitted
to a polynomial of type: 1/τ 1

ee(x, S) = ax + bx2 + cx3, for 0 � x � 1. The coefficients a, b
and c depend on S and kF. This has been found in agreement with experimentally measured
conductivity, as a function of frequency, for a semiconductor inversion layer with disorder [27].
The x dependence of our numerically computed 1/τ 1

ee(x, S) differs from that shown by prior
performed calculations for weak disorder potential case [2–5] as well as for the strong disorder
potential case [24], where the proper q and ω dependence of V1 and ξ1 was ignored.

Our numerically computed 1/τ 1
ee(x, S) from equation (14), along with that from

equations (15) and (17), is plotted in figure 3 as a function of S for three values of normalized
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Figure 2. Dimensionless electron–electron scattering rate as a function of normalized energy for
a quantum well at kF = 3.45 × 106 cm−1, ε0 = 12.5 and εF = 35.25 meV. Numerically computed
results are from equation (14): curve A, when h̄/τεF = 0.1 and curve C, for h̄/τεF = 0.001.
Analytical results: curve B using equation (17) at h̄/τεF = 0.1 and curve D, using equation (15)
for h̄/τεF = 0.001.
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Figure 3. Dimensionless electron–electron scattering rate as a function of normalized broadening
for a quantum well, at kF = 3.45 × 106 cm−1, ε0 = 12.5 and εF = 35.25 meV. Numerically
computed results from equation (14): curve A, when ε/εF = 0.6; curve B, for ε/εF = 0.3 and
curve C, when ε/εF = 0.1. Analytical results: curve D, using equation (15) at ε/εF = 0.1 and
curve E, using equation (17) for ε/εF = 0.1.

energy (0.1, 0.3, 0.6), kF = 3.45 × 106 cm−1 and εF = 35.25 meV. The 1/τ 1
ee(x, S) shows

rapid decline with S when 0 < S < 0.1, as is seen from the figure. This suggests that the
electron scattering rate exhibits a stronger dependence on the disorder potential for a dilute
impurity distribution. Figure 3 also shows that the overall agreement between our analytical
results and the detailed numerical results is good, which justifies our approximations employed
in obtaining simple analytical results. We also computed 1/τ 1

ee(ε, τ ) as a function of carrier
density (n2) for given values of ε and h̄/τ . It is found that 1/τ 1

ee(ε, τ ) declines on increasing
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n2 for given values of ε and 1/τ . However, this is to be seen, along with the fact that an
increase in n2 can be made at the expense of enhancing the disorder which in turn leads to
shorter values of h̄/τ , in the case of a doped quantum well. Also, both the increase in n2

and the enhancement in h̄/τ affect the screened electron–electron interaction potential and the
response function, ξ1(q, ω), which determines the value of 1/τ 1

ee(ε, τ ) for a given value of ε.
Our numerical computation of 1/τ 1

ee(x, S) by choosing correct diffusive behaviour of V1(q, ω)

and ξ1(q, ω), in the q–ω plane, suggests that a Fermi-liquid quasi-particle description is well
justified for a 2D electron system with a random disorder potential.

4. 1D electron system (a quantum wire)

In the presence of a disorder potential, electrons in a degenerate system diffuse instead of
moving ballistically. This plays an important role in determining several properties, such
as transport properties. In the absence of a disorder potential, the Fermi surface of 1DEG
smeared out and the momentum-space discontinuity in the distribution function disappears.
Reconstruction of the Fermi surface takes place on introduction of a disorder potential in
1DEG. This suggests that, in the presence of randomized disorder potential, a Fermi-liquid
quasi-particle description can be applied to the study of electron–electron scattering in 1DEG or
in a QWR. The presence of disorder potential in a doped semiconductor device is unavoidable
since a small amount of residual impurities is always there. This motivated us to calculate the
electron–electron scattering rate, within the RPA, for a QWR consisting of a disorder potential.
We consider a QWR along the x axis with a δ-function type confinement along the z axis. We
further assume that the electron wavefunction vanishes at the boundaries of the wire across the
y axis, at y = ±a/2, where a is the width of a QWR. The bare Coulomb potential between
electrons in a QWR is given by [8]

V 0(q, y, y ′) = 2e2

ε0
k0(q|y − y ′|) (18)

where k0(q|y − y ′|) is the zeroth-order modified Bessel function. q is the wavevector
component along the x axis. k0(q|y − y ′|) can be taken as [29]1

k0(q|y − y ′|) =
∫ ∞

0
dt

exp
(−|y − y ′|√t2 + q2

)
√

t2 + q2
. (19)

V 0(q), using equations (18) and (19), is then given by

V 0(q) = 2e2

ε0

∫ ∞

0
dt

H (λ)

λ
, (20)

where

λ =
√

t2 + q2. (21)

H (λ) is the expectation value of exp(−λ|y − y ′|). As mentioned before, we confine ourselves
to the intrasubband electron–electron scattering within the ground subband. H (λ) for
intrasubband transitions is defined as [30]

H (λ) =
∫ a/2

−a/2
dy

∫ a/2

−a/2
dy ′ exp(−λ|y − y ′|)|φ(y)|2|φ(y ′)|2. (22)

1 The representation of the modified Bessel function 8.432 (9) for ν = 0 reduces to equation (19). The V 0(q, y, y′)
obtained using (18) and (19) will be used for q > 0 in subsequent descriptions.
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Evaluation of equation (22) by taking φ(y) and φ(y ′) that vanish at y = ±a/2 yields [30]

H (λ) =
(

u

w
+

2

u

)
− 32π4

(wu)2
(1 − e−u), (23)

with u = λa and w = u2 + 4π2. For larger values of a (
2π), H (u) → 3/u and V 0(q)
reduces to 3πe2/ε0|qa| which agrees with the asymptotic forms of V 0(q) reported in [8],
whereas, for smaller values of u (�1), H (u) goes to unity and equation (20) reduces to

V 0(q) = 2e2

ε0

∫ ∞

0

dt√
t2 + q2

. (24)

The V 0(q) defined by equation (24) has been used to calculate 1/τee(ε, τ ) for 1DEG [24].
The logarithmically divergent integral in equation (24) was cut-off by taking an upper limit,
qc ∼ 1/a, to obtain V 0(q) that well describes the interactions at distances much larger than a.
The integrand in equation (20), compared to that in equation (24), has better convergence and
it does not show logarithmic divergence at the upper limit, since H (u)→ 0 as t → ∞. Also,
equation (20) yields the correct q and a dependence of V 0(q) and provides a better description
of the bare Coulomb potential, as compared to that given by equation (24) for a QWR. The ν
for intrasubband transitions within the ground state of a QWR is given by

ν2 = 2m∗
e

π h̄2kF
. (25)

Evaluation of equation (6) with the use of (8) gives for a QWR

ξ2(q, ω) = i

τεF

(φ − ψ)

[φψ{(φ − ψ)2 − (q/kF)2}] , (26)

with

φ =
√

1 +
i

2τεF
(27)

ψ =
√

1 − (ω + i/2τ )

εF
. (28)

The V2(q, ω) that has the correct diffusive behaviour for ε � εF is given by [8, 24]

V2(q, ω) = 1
ν2 D2q2

−iω+D2q2 + 1
V 0(q)

, (29)

where 0 � q � ω/vF. The D2 = v2
Fτ is the one-dimensional diffusion coefficient.

Computation of equation (11) with the use of equations (20)–(29) yields the RPA value of
1/τ 2

ee(ε, τ ), which has been found to be unreasonably high for a realistic quantum wire. The
previously reported RPA calculation of 1/τ 2

ee(ε, τ ), which has basically been performed for
a larger value of 1/τ(> ε), uses q- and ω-independent V2(q, ω) [24]. Also, the calculations
based on the Tomonaga–Luttinger model have been performed by taking a screened electron–
electron potential independent of both q and ω [32, 33]. This motivated us to take static
(ω-independent) screened electron–electron interaction for computing 1/τ 2

ee(ε, τ ). As is seen
from equation (30),use of aω-independent screened electron–electron potential is well justified
when ωτ � 1. In the following we take

V2(q, ω) = 1

ν2 + 1/V 0(q)
(30)
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to compute the 1/τ 2
ee(ε, τ ) for a realistic QWR. Equation (11) with the use of (25), (26) and (30)

can be rewritten in terms of dimensionless quantities:

h̄

τ 2
ee(x, S)εF

= 1

π

∫ x

0
dy

∫ y/2

0
dz

y

[1 + C(z)]2

[
Re

{
iB(y)

A(y)(B2(y)− z2)− iSB(y)

}]2

, (31)

where C(z) = πkFh̄2/2m∗V 0(z), A(y) = √
1 + S2/4 − y(1 + iS/2) and B(y) = √

1 + iS/2−√
1 − y − iS/2.

The analytical solution of equation (31) with the use of equation (20) for all values of
x and S up to unity is not possible. A closer look at equations (20) and (31) suggests that z
values close to the lower limit (z = 0) make the maximum contribution to z integration. For
these values of z, V 0(z) tends to a very large value, since it diverges for z → 0. This suggests
that, to retain the major contributions to h̄/τ 2

ee(x, S)εF from z and y integrations, we can take
V2(q, ω) ≈ 1/ν2, A ∼= 1 and B ∼= (y + iS)/2, which is justified for x � 1 and S � 1.
Equation (31) then simplifies to

h̄

τ 2
ee(x, S)εF

= 4S2

π

∫ x

0
y dy

∫ y/2

0

dz

(y2 + S2 − 4z2)2
. (32)

The evaluation of z and y integrations yields

h̄

τ 2
ee(x, S)εF

= x

π
+

S2

2π
√

S2 + x2
ln

[√
S2 + x2 − x√
S2 + x2 + x

]
. (33)

We have used: (i) the screened electron–electron interaction potential and (ii) a
linear wavevector-dependent energy difference between two electronic states in obtaining
equations (32) and (33). The calculations that are based on the Tomonaga–Luttinger
model [31, 32] have also been performed using a constant screened electron–electron potential
and linear wavevector-dependent energy eigenvalues. Therefore, our approach of obtaining
analytical results given by equation (33) is similar to the treatment within the Tomonaga–
Luttinger model [31, 32]. The simple solvable model for zero-range potentials, which are
analogous to our treatment, can be found elsewhere [33].

We computed h̄/τ 2
ee(x, S)εF for a GaAs quantum wire that has m∗

e = 0.068 me and
ε0 = 12.5. Our numerically computed results using equations (31) and (20) along with
h̄/τ 2

ee(x, S)εF from equation (33) are plotted as a function of normalized energy in figure 4,
for kF = 106 cm−1, two values of normalized broadening (0.1 and 0.4) and two values of
the width of the quantum wire (20 and 50 Å). The figure shows that agreement between
the analytical and numerically computed results is very good when x � 1 and it is fairly
good for the rest of the values of x . As is seen from the figure, the magnitude as well
as the x dependence of h̄/τ 2

ee(x, S)εF change, more obviously at larger values of x(>0.2)
and smaller values of S(<0.2), on replacing the q-independent screened electron–electron
potential by a q-dependent one. Previously reported approximate calculations show that the
h̄/τ 2

ee(x, S)εF is proportional to
√

x at smaller values of x when S is large (∼ unity) [24].
In support of earlier findings, our computed curves D and E also exhibit

√
x-dependent

type behaviour, as is seen from the figure. We further find that the computed curve E
can almost be fitted to h̄/τ 2

ee(x, S)εF = α
√

x + βx , where α and β depend on h/τ and
kF. The magnitude of h̄/τ 2

ee(x, S)εF has been found to be decreasing on increasing a, for
all values of x and S. Our computed h̄/τ 2

ee(x, S)εF as a function of the wire width, using
equations (31) and (20), for x = 0.4, S = 0.1 and kF = 106 cm−1 is displayed in figure 5.
The h̄/τ 2

ee(x, S)εF tends to h̄/τ 1
ee(x, S)εF for larger values of the wire width, as is seen from

figures 2 and 5. Figure 5 suggests that the electron–electron scattering becomes stronger
on decreasing the width of a QWR, when other intrinsic parameters are kept unchanged.
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Figure 4. Dimensionless electron–electron scattering rate as a function of normalized energy
for a quantum wire at εF = 5.6 meV, ε0 = 12.5 and kF = 106 cm−1. Analytical results from
equation (33): curve A, when a = 50 Å and h̄/τεF = 0.1; curve D, when a = 50 Å and h̄/τεF =
0.4. Numerically computed results from equation (31): curve B, for a = 20 Å and h̄/τεF = 0.1;
curve C, when a = 50 Å and h̄/τεF = 0.1; curve E, for a = 50 Å and h̄/τεF = 0.4.
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Figure 5. Dimensionless electron–electron scattering rate of a quantum wire as a function of wire
width when ε0 = 12.5, kF = 106 cm−1, εF = 5.6 meV, ε/εF = 0.4 and h̄/τεF = 0.1.

We have also computed h̄/τ 2
ee(x, S)εF, using equations (31) and (20), as a function of kF for

ε = 2.24 meV, a = 50 Å and h̄/τ = 0.56 meV. Our computed results show that the electron–
electron scattering rate is enhanced on decreasing the carrier density, when h̄/τ, ε and the
width of the wire are kept constant. However, in a doped quantum wire, an increase in carrier
density can only be made at the cost of increased disorder and thermalization, which is not
considered in computing h̄/τ 2

ee(x, S)εF as a function of carrier density.
To understand further the role of electron-disorder potential scattering in electron–electron

scattering in a quantum wire, we computed h̄/τ 2
ee(x, S)εF as a function of S for given values

of x , a and kF. Our numerically computed results from equations (31) and (20) along with
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Figure 6. Dimensionless electron–electron scattering rate as a function of normalized broadening
for a quantum wire at εF = 5.6 meV, ε0 = 12.5 and kF = 106 cm−1. Analytical results from
equation (33): curve A, when a = 50 Å and ε/εF = 0.4; curve C, when a = 50 Å and ε/εF = 0.1.
Numerically computed results from equation (31): curve B, for a = 50 Å and ε/εF = 0.4; curve
D, when a = 50 Å and ε/εF = 0.1.

those from equation (33) are displayed in figure 6 for two values of normalized energy (0.1
and 0.4), a = 50 Å and kF = 106 cm−1. As is expected, equation (33) shows very good
agreement with numerically computed results from equations (31) and (20), when x � 1. The
agreement between simple analytical results and the detailed numerical results is good even at
higher values of S and x . It has to be noted that, for smaller values of S(<0.1), numerically
computed h̄/τ 2

ee(x, S)εF from equations (31) and (20) decline on decreasing S. However,
the range of S values for which h̄/τ 2

ee(x, S)εF increases on increasing S narrows down on
reducing x , as is seen from the figure. Equation (33) does not exhibit this kind of behaviour.
In our opinion, the decline in h̄/τ 2

ee(x, S)εF on decreasing S (<0.1) does not relate to any new
physical phenomenon but probably it is the regime of x and S where RPA fails to provide a
satisfactory description of electron–electron scattering in a quantum wire. The assumptions
made to obtain ξ2(q, ω) may not remain valid for these values of x and S. Nevertheless, the
results presented in this section suggest that electron–electron scattering in the presence of a
significant disorder potential can be very well described within a Fermi-liquid treatment by
taking into account the correct diffusive behaviour of the electron gas in a quantum wire.

5. Quantum wire system

A 1D periodic sequence of quantum wires is known as a QWS. A quantum wire consists
of a strong epitaxial confinement along one direction and a weak confinement along another
direction. We take a delta function type confinement along the z axis and an infinite potential
well type confinement along the y axis for a quantum wire. A typical quantum wire structure
is depicted in figure 7, where the width of a wire along the z axis is negligibly small. The bare
Coulomb potential for electrons in a QWS can be given by [34]

V 0(q, q ′) = 2e2

ε0

∑
l=l′

∫ ∫
k0(q|(l − l ′)d + (y − y ′)|)

× exp{−iq ′(l − l ′)d}|φ(y)|2|φ(y ′)|2 dy dy ′, (34)
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Figure 7. A typical quantum wire structure used to calculate electron–electron interaction.

where q and q ′ are the wavevector components along the x axis and y axis, respectively. The
l and l ′ are the quantum wire indices. The Bessel function k0(|q(l − l ′)d + (y − y ′)|) can be
represented in several ways. Li and Das Sarma evaluated V 0(q, q ′) using a periodic boundary
condition along the y axis on assigning a finite size to the QWS [32]. However, their results
do not yield correct limiting values of V 0(q, q ′) for d → 0 and ∞. One of the forms of
k0{q(y − y ′)} that yields the correct limiting values of V 0(q, q ′) is given by equation (19). We
solve equation (34) using equation (19) to get [30]

V 0(q, q ′) = 2e2

ε0

∫ ∞

0

U(λ, q ′)
λ

dt (35)

with

U(λ, q ′) = H (λ)− C(λ)[1 − S(λ, q ′)]. (36)

λ defined by equation (21) and C(λ) is given by equation (22) on replacing exp(−q|(t − t ′)|)
by exp{−q ′(t − t ′)}. Evaluation of S(λ, q ′) and C(λ) gives [30]

S(λ, q ′) = sinh(λd)

cosh(λd)− cos(q ′d)
(37)

C(λ) = 16π4

(uw)2
(1 − e−u)(1 − eu). (38)

H (λ), u and w are defined earlier in section 4. Equation (35) reduces to (20) for d → ∞,
while for d → 0 it describes the bare Coulomb potential of a QWL. Following the arguments
presented in section 4, the screened Coulomb interaction between electrons for a QWR, in the
diffusive regime, is given by

V3(q, q ′) = 1

ν2 + 1/V 0(q, q ′)
(39)

where q ′ varies over a unit cell of width d along the y axis and it takes discrete values restricted
by −π/d � q ′ � π/d . h̄/τ 3

ee(x, S) in terms of dimensionless quantities is given by

h̄

τ 3
ee(x, S)εF

= kFd

2π2

∫ x

0
dy

∫ y/2

0
dz

∫ ϕ

−ϕ
dz′ y

[1 + C(z, z′)]2

×
[

Re

{
iB(y)

A(y)(B2(y)− z2)− iSB(y)

}]2

, (40)

where ϕ = π/kFd , z′ = q ′/kF and C(z, z′) = πkFh̄2/2m∗V 0(z, z′).
An analytical solution of equation (40) is not possible. The behaviour of V 0(z, z′) with z

after integration over z′ is found to be very similar to that of V 0(z) for a QWR. This suggests
that a naive analytical solution of equation (40) can be given by equation (33). We computed
equation (40) numerically for a GaAs/Alx Ga1−x As QWS system by modelling it as a 2D
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Figure 8. Numerically computed electron–electron scattering rate as a function of normalized
energy for ε0 = 12.5. Curve A is for a quantum wire from equation (31) at εF = 5.6 meV,
a = 50 Å, kF = 106 cm−1 and h̄/τεF = 0.1. Curve B is for a quantum wire system from
equation (40) for εF = 5.6 meV, a = 50 Å, d = 125 Å, kF = 106 cm−1 and h̄/τεF = 0.1. Curve
C is for a quantum well from equation (14) at kF = 3.45 × 106 cm−1 and εF = 35.25 meV.

periodic sequence of 1D wires embedded in a dielectric medium with an average dielectric
constant, ε0 = 12.5. For computation of our results, we took a = 5 nm, d = 12.5 nm
and kF = 106 cm−1. Our numerically computed h̄/τ 3

ee(x, S) along with h̄/τ 2
ee(x, S) from

equation (31) and h̄/τ 1
ee(x, S) from equation (14) are plotted in figure 8, as a function of

normalized energy for S = 0.1. The figure shows that h̄/τ 3
ee(x, S) is smaller than h̄/τ 2

ee(x, S)

and it is larger than h̄/τ 1
ee(x, S), for all values of x . However, the nature of the h̄/τ 3

ee(x, S)
versus x curve is similar to that of the h̄/τ 2

ee(x, S) versus x curve. Both intra-wire and inter-wire
electron–electron interactions contribute to h̄/τ 3

ee(x, S), whereas h̄/τ 2
ee(x, S) is contributed by

intra-wire interactions only. The major contribution to h̄/τ 3
ee(x, S), however, come from intra-

wire interactions if the separation between two consecutive wires is larger than the width
of a wire. This can very well be seen from the figure when d > a. An important result that
emerges from the figure is the enhancement of the electron–electron scattering rate on reducing
the effective dimensionality of the system.

6. Discussions and conclusion

We computed 1/τ 1
ee(ε, τ ), 1/τ 2

ee(ε, τ ) and 1/τ 3
ee(ε, τ ) by taking the correct diffusive behaviour

of a screened electron–electron interaction potential and the response function ξ(q, ω) in
the q–ω plane for zero temperature. The magnitude and the ε dependence of 1/τ 1

ee(ε, τ ),
1/τ 2

ee(ε, τ ) and 1/τ 3
ee(ε, τ ) is determined by the values of the intrinsic parameters �/τ , kF

and a. The numerically computed values of 1/τ 1
ee(ε, τ ) as a function ε can almost be

fitted to a polynomial of type 1/τ 1
ee(ε, τ ) = aε + bε2 + cε3 for 0 � ε � εF. The

1/τ 1
ee(ε, τ ), 1/τ 2

ee(ε, τ ) and 1/τ 3
ee(ε, τ ) exhibit the largest value for h̄/τ → 0 and they decline

monotonically on increasing h̄/τ for given values of ε, a and kF. The presence of disorder
weakens the electron–electron scattering rate. A small amount of residual impurities is
unavoidable and therefore electron-disorder potential scattering cannot completely be ignored
in a doped semiconductor nanostructure. As is expected, the computed 1/τ 2

ee(ε, τ ) declines
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with a and it tends to 1/τ 1
ee(ε, τ ) for large values of a (>50 nm), when h̄/τ , ε and kF

are kept unchanged. The 1/τ 2
ee(ε, τ ) varies as

√
ε for smaller values of ε and as a linear

function of ε at larger values (∼εF), when h̄/τ is of the order of unity. It is found that
1/τ 1

ee(ε, τ ) < 1/τ 2
ee(ε, τ ) > 1/τ 3

ee(ε, τ ), for given values of ε, h̄/τ , a and kF. The inter-wire
electron–electron interactions, which are absent in a quantum wire, weaken the electron–
electron scattering. Both intra-wire and inter-wire interactions contribute to the electron–
electron scattering rate in the case of a quantum wire structure. The electron gas in a QWS
exhibits the quasi-1D behaviour and the screened electron–electron interaction potential is
weaker in a QWS compared to that in a QWR. We thus find that the electron–electron
scattering rate enhances on reducing the effective dimensionality of a system. The simple
analytical results given by equations (14) and (33) provide the reasonably good description
of the electron–electron scattering rate, in the presence of disorder, for a quantum well and
a quantum wire, respectively, especially when ε and h̄/τ are much smaller than the Fermi
energy. Our theoretical study of 1/τ 1

ee(ε, τ ), 1/τ 2
ee(ε, τ ) and 1/τ 3

ee(ε, τ ), within the RPA
framework, suggests that a Fermi-liquid quasi-particle description can be applied to electron–
electron scattering, in the presence of a disorder potential, in a QWL, QWR and QWS. Also,
a theoretical description of electron–electron scattering in the presence of electron–impurity
scattering is possible beyond the Tomonaga–Luttinger model for low dimensional systems. The
results presented in this paper can be used to estimate quantum corrections to conductivity, the
damping of collective excitations and the optical properties of nanostructures.
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